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NON-EUCLIDEAN MODEL OF THE ZONAL DISINTEGRATION

OF ROCKS AROUND AN UNDERGROUND WORKING

UDC 539.37+622.01+514.86M. A. Guzev and A. A. Paroshin

The non-Euclidean continuum model for the description of the stress-field distribution around
underground workings with a round cross section is considered. From the physical viewpoint,
the non-Euclideanness parameter determines the incompatibility of elastic deformations in a
rock. It is shown that disintegration zones can be identified with the parts of the rock in
which this parameter takes on the maximum values and the force discontinuity criterion for
the medium holds. An analysis allows one to relate the macroscopic characteristics of zonal
rock fracture around a working to the non-Euclideanness parameter.

Introduction. It is known from experimental studies that a zonal periodic structure in the form of
alternated regions of fractured and relatively intact rock appears around rock workings [1–5]. It is impossible
to describe the occurrence of such a structure on the basis of the classical continuum model, since if one
considers the problem of the stress-field distribution around a working with a round cross section upon plane
deformation [6] with the stress σ∞ specified at infinity, then the main radial stress σrr and the angular stress
σϕϕ have extrema on the working contour and tend monotonically to σ∞ at infinity within the framework
of the classical model. However, the experimentally observed alternation of fracture zones around a working
corresponds to the occurrence of compression and tension of the rock, i.e., it shows the wavy behavior of
the stress components. Shemyakin et al. [4, 5] used the plastic solution for a cylindrical cavity in a plane-
deformed state to describe this behavior of the stress field. Within the framework of this model, Reva and
Tropp [7] attempted to solve the boundary-value problem of the stress-field distribution around a working
in a stationary state. However, “. . . to determine the internal boundaries, the theoretically continual body
of information . . . which is inaccessible under concrete conditions is needed . . . .” [7, p. 129]. At the same
time, it follows from the results of static experiments [8] on models from equivalent materials, which were
performed with a view to studying the zonal character of fracture around workings, that, for a given material,
the number of originating zones depends on the ratio of the applied stress to the strength limit of the material.
Here the distance between the formed zones is approximately equal to the radius of a working.

The complexity of the development of a quantitative theory of the phenomenon of zonal disintegration
is determined by the need to simulate the behavior of a medium having the properties of elastic deformation
(nonfractured zones around a working) and fracture. From the physical viewpoint, the formation of fracture
zones depends on the presence of microdefects in a medium which lead to the formation of macroscopic
structures, in particular, a main crack repeating the shape of a working, under the action of the applied
stress [8]. To describe the defects, one can use methods of the modern geometry [9], abandoning the classical
hypothesis that the internal geometry of a material coincides with the geometry of the observer’s Euclidean
space. Here one can construct a model by increasing the number of parameters of the classical theory.

The general idea of extension of the classical model consists of the following: 1) the parameters
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that describe the non-Euclidean character of the internal geometry of a medium are introduced; 2) these
parameters are related to the macroscopic characteristics of the medium; 3) the method of determining the
phenomenological parameters via an analysis of experimental data is indicated. A realization of this idea is
proposed in the present study. Some results of this approach were reported in [10].

1. Transition from the Classical Model to the Non-Euclidean Model. The mathematical
model of a rock [6] in which the rock is assumed to be a plane loosed by a hole simulating a fixed round
working upon triaxial compression and which is generally accepted in the mechanics of underground structures
is used. The problem of the stress-field distribution around a working is given in a stationary formulation.
By virtue of the polar symmetry of the problem, the equations of equilibrium have the form

∂σrr
∂r

+
1
r

(σrr − σϕϕ) = 0, σrϕ = 0. (1.1)

The external forces are absent on the working contour (r = r0) and they are given at infinity:

σrr = 0 for r = r0, σrr, σϕϕ → σ∞ for r → r∞. (1.2)

In the classical model, the strain components εij are reversible (elastic) and coincide with the complete
strains described by the Almansi tensor Aij in Euler variables. Then, the compatibility conditions for strains
(vanishing of the Riemann–Christoffel tensor Rlijk) are satisfied. The geometrical meaning of Rlijk consists of
the fact [11] that this tensor is an invariant characteristic of the Euclideanness of a certain set (if Rlijk = 0, one
can introduce the Euclidean coordinates on this set). The fulfillment of the compatibility conditions for a rock
means that its internal geometrical structure coincides with the structure of the Euclidean (external relative
to the rock) space. For small strains, the compatibility conditions are called the Saint-Venant compatibility
conditions and, for a plane-deformed state, they are written in the form

R ≡ 2
(∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

− 2
∂2ε12

∂x1∂x2

)
= 2
(

∆εll −
∂2εij
∂xi∂xj

)
; (1.3)

R = 0, (1.4)

where ∆ is the Laplace operator. For the classical model, the compatibility condition (1.4) is reduced to the
form

∆σ = 0, (1.5)

where σ = spσij is the trace of the stress tensor. Equations (1.1)–(1.5) correspond to the classical problem
of the stress distribution around a working.

The formation of zones around a working is irreversible; therefore, together with the elastic-strain
tensor, it is necessary to introduce the irreversible-strain tensor πij as an additional parameter of the problem.
In this case, the equations of state of the rock εij and πij are assumed to be the thermodynamic variables.
Here it is necessary to specify relations that relate εij and πij to the Almansi tensor Aij . The strains at which
the zones form are small; therefore, the assumption that the reversible and irreversible strains are additive is
used:

Aij = εij + πij . (1.6)

Since εij 6= Aij , the function R does not vanish. We note that, for the tensor Aij , the representation in terms
of the components of the displacement vector ui, which has the form 2Aij = ∂ui/∂xj + ∂uj/∂xi at small
strains, always holds. Then, the compatibility conditions (1.3) and (1.4) for εij = Aij are satisfied identically.

Thus, the occurrence of irreversible strains in a rock leads to the nonfulfillment of the compatibility
condition for εij . From the mathematical viewpoint, this means that the internal geometrical structure of
the rock is non-Euclidean. Here R has the meaning of a scalar curvature [11], i.e., the trace of the Ricci
tensor, which completely determines the Riemann–Christoffel tensor in the three-dimensional space. Under
conditions of a plane-deformed state, the scalar curvature is a single non-Euclideanness parameter of the
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internal rock structure. The transition from the classical model, in which R = 0, to the non-Euclidean model
is performed by varying the latent parameter R.

For the non-Euclidean model, the equations of equilibrium (1.1) and the boundary conditions (1.2)
remain true. The question whether Hooke’s law holds in introducing the defectness parameter R and which
equation R satisfies are answered on the basis of the principles of nonequilibrium thermodynamics. In this
case, as is shown below, it is necessary to set the internal energy U of a rock and the dissipation function D.

The internal energy is assumed to be the function of entropy s, the reversible-strain tensor εij , and
the parameter R: U = U(s, εij , R). Since the strains εij are small, the dependence of U on these variables
is presented in the form of Hooke’s potential. The additional contribution to this potential should take into
account the dependence of U on the non-Euclidean internal structure. We assume that the contribution
enters additively and it is square in R, i.e.,

ρ0U =
E

1 + ν

{ ν

2(1− 2ν)
ε2
jj +

1
2
εijεij

}
− q

4
R2, (1.7)

where ρ0 is the density of the medium, E is Young’s modulus, ν is Poisson’s ratio, and q is the “fitting”
parameter of the model determined from experimental data; hereinafter, summation over repeated subscripts
i is performed.

2. Kinematic Relations and Equations of State. The use of the functions εij and R as variables
makes it necessary to construct the transfer equations for them. During the motion, the Almansi tensor
changes as follows:

DAij
Dt

=
dAij
dt

+Ail
∂vl
∂xj

+Alj
∂vl
∂xi

=
1
2

( ∂vi
∂xj

+
∂vj
∂xi

)
= eij . (2.1)

It follows from (2.1) and (1.6) that

eij =
Dεij
Dt

+
Dπij
Dt

. (2.2)

We introduce the source Eij of irreversible strains πij [9], assuming

Dπij
Dt

= Eij . (2.3)

From (2.2) and (2.3), we obtain the following transfer equations for the strain tensor εij :

Dεij
Dt

= eij − Eij . (2.4)

In deriving a transfer equation for R, we take into account that, for small strains, it is not possible to
distinguish the differentiation of d/dt and ∂/∂t; then, we have

dR

dt
= −2

(
∆Ell −

∂2Eij
∂xi∂xj

)
. (2.5)

Following to the standard scheme of non-equilibrium thermodynamics [12], we write the first and
second laws of thermodynamics in the form

ρ
dU

dt
= −

∂J(q)k

∂xk
+ σij

∂vi
∂xj

, ρ
ds

dt
= −

∂J(s)k

∂xk
+ D, D > 0. (2.6)

Here the functions J(q)k and J(s)k are the thermal-flux and entropy components, σij are the stress-tensor
components, ρ is the density, s is the specific entropy, and D is a dissipation function. Along the trajectory
of motion, the Gibbs identity

dU

dt
= T

ds

dt
+
∂U

∂εij

dεij
dt

+
∂U

∂R

dR

dt

holds (T is the temperature). Substituting the expressions for time derivatives with respect to the internal
energy and entropy from (2.6), we obtain
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−
∂J(s)k

∂xk
+ D = − 1

T

∂J(q)k

∂xk
+

1
T

(
σij

∂vi
∂xj
− ρ ∂U

∂εij

dεij
dt
− ρ ∂U

∂R

dR

dt

)
. (2.7)

Using the transfer equations (2.4) and (2.5), we exclude the time derivatives with respect to εij and R from
the right side of (2.7); then, we have

ρ
∂U

∂εik

dεik
dt

= (δik − 2εik)ρ
∂U

∂εkj

∂vi
∂xj
− ρEij

∂U

∂εij
; (2.8)

ρ

T

∂U

∂R

dR

dt
= −J

T

(
∆Ell −

∂2Eij
∂xi∂xj

)
, J ≡ 2ρ

∂U

∂R
. (2.9)

We rewrite (2.9), separating the divergent contribution:

ρ

T

∂U

∂R

dR

dt
=

∂

∂xk

(J
T

∂Ell
∂xk

− Ell
T

∂J

∂xk
− J

T

∂Ekj
∂xj

+
Ekj
T

∂J

∂xj

)

+
1
T 2

∂T

∂xk

(
J
∂Ell
∂xk

− Ell
∂J

∂xk
− J

∂Ekj
∂xj

+ Ekj
∂J

∂xj

)
+

1
T

(
Ell∆J − Eij

∂2J

∂xi∂xj

)
. (2.10)

We substitute (2.8) and (2.10) into (2.7); as a result, we have the following relation:

− ∂

∂xk

(
−
J(q)k

T
+ J(s)k +

J

T

∂Ell
∂xk

− Ell
T

∂J

∂xk
− J

T

∂Ekj
∂xj

+
Ekj
T

∂J

∂xj

)
+ D

=
1
T

[
σij − (δik − 2εik)ρ

∂U

∂εkj

] ∂vi
∂xj

+
Eij
T

(
ρ
∂U

∂εij
+ δij∆J −

∂2J

∂xi∂xj

)

+
1
T 2

∂T

∂xk

(
− J(q)k + J

∂Ell
∂xk

− Ell
∂J

∂xk
− J

∂Ekj
∂xj

+ Ekj
∂J

∂xj

)
. (2.11)

In accordance with the assumptions of non-equilibrium thermodynamics, the dissipation function is repre-
sented by the bilinear form of thermodynamic forces and flows [12]: D = XiYi. The consequence of this
statement and relation (2.11) are the expressions for the entropy flow and the dissipation function:

J(s)k =
J(q)k

T
− J

T

∂Ell
∂xk

+
Ell
T

∂J

∂xk
+
J

T

∂Ekj
∂xj

−
Ekj
T

∂J

∂xj
,

D =
1
T

[
σij − (δik − 2εik)ρ

∂U

∂εkj

] ∂vi
∂xj

+
Eij
T

(
ρ
∂U

∂εij
+ δij∆J −

∂2J

∂xi∂xj

)
(2.12)

+
1
T 2

∂T

∂xk

(
− J(q)k + J

∂Ell
∂xk

− Ell
∂J

∂xk
− J

∂Ekj
∂xj

+ Ekj
∂J

∂xj

)
.

We assume that the internal energy and the dissipation function are given; then, in accordance with
(2.12), one can write the equations of state of a rock

σij = (δik − 2εik)ρ
∂U

∂εkj
,

1
T

(
ρ
∂U

∂εij
+ δij∆J −

∂2J

∂xi∂xj

)
=

∂D

∂Eij
. (2.13)

For a thermal flux, we accept the approximation of linear relations

−J(q)k + J
∂Ell
∂xk

− Ell
∂J

∂xk
− J

∂Ekj
∂xj

+ Ekj
∂J

∂xj
= λ

∂T

∂xk
(λ > 0), (2.14)

where λ is the phenomenological parameter.
In the approximation of small strains, we assume that ρ = ρ0. Substituting (1.7) into (2.13), we obtain

σij =
E

1 + ν

(
εij + δij

ν

1− 2ν
I1

)
, I1 = εll; (2.15)
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1
T

(
σij − qδij∆R+ q

∂2R

∂xi∂xj

)
=

∂D

∂Eij
, (2.16)

where I1 is the first invariant of the elastic-strain tensor. It follows from (2.15) that, upon parametrization
of the internal energy specified by relation (1.7), the stress and reversible-strain components are related by
Hooke’s classical law.

3. Calculation of the Defectness Parameter R. Function R satisfies Eq. (2.5). In a stationary
state, we have dR/dt = 0 and

∆Ell −
∂2Eij
∂xi∂xj

= 0. (3.1)

The sources Eij are determined in terms of the dissipation function D in accordance with (2.16). To en-
sure the nonnegative D, we specify the dependence between the source Eij of irreversible strains and the
thermodynamic forces in the form

Eij = ξ
(
σij − qδij∆R+ q

∂2R

∂xi∂xj

)
(ξ > 0). (3.2)

Substituting (3.2) into (3.1), we have

2q∆2R−∆σ = 0, σ = σll. (3.3)

The quantity σ is found from the equation of state (2.15): σ = EI1/(1− 2ν). The relation between the first
invariant I1 and R is determined by relation (1.3). Substituting

εij = [(1 + ν)σij − δijνσ]/E (3.4)

into (1.3), we obtain

R = 2
(

∆I1 +
ν

E
∆σ
)

= 2
(1− 2ν

E
∆σ +

ν

E
∆σ
)

=
2(1− ν)

E
∆σ. (3.5)

In the limiting case of the classical model, the function R = 0, and Eq. (3.5) is reduced to the compatibility
equation (1.5). From (3.3) and (3.5), follows the equation

∆2R− γ2R = 0, where γ2 = E/[4q(1− ν)]. (3.6)

To write the boundary conditions for R, we first consider the thermal flux J(q)k (2.14), assuming that
T = const. The nonzero contribution to J(q)k coincides with the density of the flow of defects in the rock.
Since the defects do not leave the bounds of the working (r = r0), the normal component of the flow vector
should vanish for r = r0, i.e.,

(n,J (q))
∣∣∣
r=r0

= 0. (3.7)

As r →∞, the function R should satisfy the natural, from the physical viewpoint, requirement for a decrease
at infinity. It is noteworthy that Eq. (3.6) and the boundary conditions formulated for it hold upon plane
and spatial deformation.

For the case of plane deformation considered, the dependence on the polar angle is absent; then, the
function R(r) satisfies the equation ( ∂2

∂r2
+

1
r

∂

∂r

)2
R = γ2R.

This is a fourth-order linear differential equation, and its solution which decreases as r →∞ is written in the
form

R(r) = aJ0(
√
γr) + bN0(

√
γr) + cK0(

√
γr), (3.8)

where J0, N0, and K0 are zero-order Bessel, Neumann, and MacDonald cylindrical functions, respectively.
We use the following boundary conditions (3.7) in the plane case:
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[(
J
∂E22

∂x1
− E22

∂J

∂x1
−J ∂E12

∂x2
+ E12

∂J

∂x2

)
cosϕ+

(
J
∂E11

∂x2
− E11

∂J

∂x2
−J ∂E12

∂x1
+ E12

∂J

∂x1

)
sinϕ

]
r=r0

= 0. (3.9)

We pass to the polar coordinates in (3.9) according to the formulas

∂

∂x1
= cosϕ

∂

∂r
− sinϕ

r

∂

∂ϕ
,

∂

∂x2
= sinϕ

∂

∂r
+

cosϕ
r

∂

∂ϕ
,

Err = E11 cos2 ϕ+ E22 sin2 ϕ+ E12 sin 2ϕ, Eϕϕ = E11 sin2 ϕ+ E22 cos2 ϕ− E12 sin 2ϕ,

Erϕ = −((E11 − E22)/2) sin 2ϕ+ E12 cos 2ϕ.

Omitting straightforward calculations, we obtain[
J
(∂Eϕϕ

∂r
− 1
r

∂Erϕ
∂ϕ

− Err − Eϕϕ
r

)
− Eϕϕ

∂J

∂r
+
Erϕ
r

∂J

∂ϕ

]
r=r0

= 0.

Since the sources are assumed to be independent, we have J |r=r0 = 0, (∂J/∂r)|r=r0 = 0, and (∂J/∂ϕ)|r=r0 =
0. Using the explicit form of the potential (1.7) and taking into account the definition of J (2.9), we have
the following boundary conditions for the function R:

R
∣∣∣
r=r0

= 0,
∂R

∂r

∣∣∣
r=r0

= 0. (3.10)

Substituting (3.8) into (3.10), we obtain an algebraic inhomogeneous system of equations for determi-
nation of the coefficients a and b in terms of c whose determinant coincides with the Wronskian of the linearly
independent solutions J0 and N0, which guarantees its unique solvability:

a = (c/2)π
√
γr0[K0(

√
γr0)N1(

√
γr0)−K1(

√
γr0)N0(

√
γr0)],

b = −(c/2)π
√
γr0[K0(

√
γr0)J1(

√
γr0)−K1(

√
γr0)J0(

√
γr0)].

4. Calculation of Stress Components. For the case of plane deformation considered, the compo-
nents εzz, εzϕ, and εzr are zero. Here the stress σzz 6= 0 and, as follows from (3.4), it is determined from
the relation (1 + ν)σzz = νσ, where σ = σzz + σrr + σϕϕ. Hence, we find that σzz = ν(σrr + σϕϕ) and, with
allowance for (1.2), we have σ → 2(1 + ν)σ∞ as r →∞.

The function σ satisfies Eq. (3.5) with a known function R and the solution of this equation is given
by the formula

σ = − E

2γ(1− ν)
[aJ0(

√
γr) + bN0(

√
γr)− cK0(

√
γr)] + 2(1 + ν)σ∞.

We substitute σϕϕ = σ/(1 + ν)− σrr into the equation of equilibrium (1.1):

∂σrr
∂r

+
2σrr
r

=
σ

(1 + ν)r
. (4.1)

Integrating (4.1), we use the formulas for differentiation of cylindrical functions

d

dr
[rJ1(r)] = rJ0(r),

d

dr
[rN1(r)] = rN0(r),

d

dr
[rK1(r)] = −rK0(r).

After appropriate calculations, we obtain the expressions for the stress components:

σrr = σ∞

(
1− r2

0

r2

)
− E

2γ3/2(1− ν2)r
[aJ1(

√
γr) + bN1(

√
γr) + cK1(

√
γr)],

σϕϕ = σ∞

(
1 +

r2
0

r2

)
+

E

2γ3/2(1− ν2)r
[aJ1(

√
γr) + bN1(

√
γr) + cK1(

√
γr)] (4.2)

− E

2γ(1− ν2)
[aJ0(

√
γr) + bN0(

√
γr)− cK0(

√
γr)].
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Fig. 1

5. Localization of Disintegration Zones. Knowing the stress components and the function R, it is
necessary to separate the rock regions that correspond to disintegration zones. Since R is a characteristic of
strain incompatibility that determines the discontinuity of a medium in these zones, the maxima |R| should
be identified with fracture regions of these zones. However, as the experiment shows, disintegration zones
appear when the stresses in a material reach a certain critical value. From the physical viewpoint, this means
that it is necessary to use a force criterion, whose fulfillment in a selected region corresponds to the occurrence
of a zone. As such criteria, we use the Mises, Treska, and Ishlinskii conditions. We introduce functions that
correspond to these conditions:

KM = A
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2,

KT = Bmax |σi − σj |, KI = C max |σi − σ|.
Here σj are the principal-stress components and A, B, and C are the “fitting” parameters. Then, the
disintegration zones should be identified with a region in the rock in which the functions KM, KT, and KI

reach the maximum values simultaneously. To determine the parameters A, B, C, γ, and c, it suffices to have
data on the site of occurrence of the first disintegration zone. One can predict the position of other zones
and the stress necessary for their occurrence within the framework of the above-described model.

The model parameters were chosen as follows. The parameter c is chosen in such a way that the
classical contribution to the solution (4.2) and the additional contribution have the same order of magnitude
for r > r0. Then, it follows from the asymptotical behavior of the functions that c is a quantity of the order of
exp(
√
γr0)/r2

0. The parameter γ depends on the radius of a working r0 and it is chosen in such a way that the
period of the function R is equal to the distance from the edge of the working to the first disintegration zone.
Knowing the value of the stress σ∗∞ at which the first fracture zone forms, we choose the constants A, B, and
C in such a way that the functions KT, KM, and KI reach a certain value K∗ in the first disintegration zone
for σ∞ = σ∗∞.

The numerical calculation were performed for the model of a working [8] with r0 = 0.07 m, and the
values of the physical constants of equivalent materials were as follows: σ∗∞ = 1.1 MPa, E = 150 MPa, and
ν = 0.15. Here the following “fitting” parameters were used:

√
γr0 = 5.2, c = 18,620 m−2, K∗ = 2 MPa,

A = 0.75, B = 1, and C = 1.5. Calculation results are shown in Fig. 1. The ratio of the distance r from
the center of the working (coordinate origin) to its radius r0 is laid off as abscissa, and the values of the
criterion functions KT, KM, and KI are laid off as ordinate; in addition, the non-Euclideanness parameter
|R| is laid off along the Y axis after renormalization, because |R| has a different dimensionality compared
to the functions KT, KM, and KI. Curve 1 corresponds to the function KT, curve 2 to KM, curve 3 to
KI, and curve 4 to |R|. According to the adopted hypothesis, the first disintegration zone corresponds to a
simultaneous attainment of the maxima for r = 2r0 by all the criterion functions. As is seen in Fig. 1, the
second and third disintegration zones should occur for r = 3.2r0 and r = 4.4r0. This conclusion coincides
with results of the experiments [8] performed on models from equivalent materials.
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6. Discussion of Results. The above-considered variant of generalization of the classical theory
with a transition from an Euclidean to a non-Euclidean internal geometrical structure of a rock allows one to
connect the geometrical characteristics with the macroscopic parameters of the zonal disintegration of rocks
around a working within the framework of the traditional formalism of non-equilibrium thermodynamics. We
make a few comments on the assumptions adopted in the proposed model.

We note that in choosing the dependence of the internal energy (1.7) on the parameter R, it is necessary
to take into account an additional contribution of the form γ2RI1, which corresponds to the energy of
interaction of a defective structure with the field of elastic deformations (γ2 is an additional parameter of the
model). However, as a preliminary analysis shows, the new special functions in the expressions for the stress
components and the defectness parameter R do not appear, and the solution is periodic. The presence of the
additional “fitting” parameter γ2 allows one to coordinate the modeling results and the experimental data
more exactly.

In deriving Eq. (2.5), the difference between the differentiation of d/dt and ∂/∂t has been ignored
because of the smallness of strains. Nevertheless, the operator of the full derivative remains on the left side
of (2.5) in the case of finite deformations as well. To substantiate this statement, it is necessary to use the
equation for the Riemann–Christoffel tensor Rlijq in the case of complete strains [9]; then, using the definition
of R = gjlgiqRlijq [11], one should obtain Eq. (2.5) (gjl and giq are the elements of the inverse matrix of an
internal metric tensor).

Relation (2.5) and conditions (3.10) also hold for a spherical working. If one considers the stationary
problem of the stress-field distribution for it, as calculations show, the periodic character of the behavior of
the main stress components is determined by the linear combination of sin(

√
γr), cos(

√
γr), and exp(−√γr)

with coefficients in the form of polynomials in 1/r. We note that in the spatial case, the Riemann–Christoffel
tensor has two additional invariants which should be included into the model by taking into account the
different orientation of defective rock structures, in addition to the scalar curvature R.

In this study, a periodic stationary structure around a working has been given. However, complicated
questions arise in describing the way of its formations. In particular, in a real rock, there are microhetero-
geneities (the occurrence of which depends on concrete conditions for the formation of a rock) determining
the magnitude of strain incompatibility in the initial state. Here the disintegration zones are located with
a periodicity determined by the radius of a working. An analysis of the possibilities of realizing the initial
conditions calls for the concretization of the dissipative characteristics of the material to be examined and
an additional experimental study of deformation fields with a different level of resolution in measurements.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01-
00636).
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